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Executive Summary

This report originated in the H∞ Research Initiative of the Office of Naval Research
and the In-House Laboratory Independent Research (ILIR) Program of Space and
Naval Warfare Systems Center San Diego (SSC San Diego). These programs focused
on H∞ engineering for fleet applications—wideband impedance matching and wide-
band amplifier optimization. Research in these applications produced several papers
[33], [32], [2], [3], four patents, a book [1], and sparked the Defense Advanced Research
Projects Agency’s interest in digital H∞ engineering.

H∞ engineering computes the best possible performance bounds. For example, a
wideband antenna should be matched to the line impedance to minimize power and
prevent amplifier burnout. The circuit designer matches the antenna by searching
for a lossless 2-port that minimizes the Voltage Standing Wave Ratio (VSWR). Tra-
ditionally, the circuit designer guesses a 2-port topology and then optimizes over its
circuit elements. This process is repeated over various topologies, hoping that a 2-port
that is “good enough” turns up. In contrast, H∞ engineering computes the smallest
VSWR attainable by any lossless matching 2-port independent of circuit topology
[21]. This best VSWR provides an absolute benchmark to assess candidate circuits.
and brings some order to matching-circuit selection. Moreover, the H∞ methods also
produce some information on an optimal 2-port circuit. If

S =

[
s11 s12

s21 s22

]

is the unknown scattering matrix of an optimal 2-port, then the H∞ methods compute
s11. Consequently, techniques that dilate the passive 1-port s11 into a lossless 2-port
solve the synthesis problem [5].

Dilations are basic to electrical engineering, signal processing, and operator the-
ory. This report makes explicit the algebraic structure of these matrix dilations by
the Cosine-Sine Decomposition (CSD). The CSD provides a unifying computational
framework for parameterizing all unitary dilations of a given matrix, parameterizing
all contractive dilations, and generalizes to produce all J -unitary dilations. These
dilations are foundational for the synthesis problem. Moreover, the CSD applies to
several signal-processing problems [29], [35], [16]. Consequently, the CSD is a simple
and flexible technique that can be applied to theoretical and computational dilation
problems.
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1 Matrix Dilations

Matrix dilations can be approached in several ways. The historical approach could
start with Halmos’ original work on unitary and normal dilations [17]. The harmonic
analysis approach could start from the work of Nagy & Foiaş [13] that links analytic
functions and dilations. Another approach follows from the link between operators
and electrical circuits discovered by Helton [19]; in this approach, circuit synthesis
is equivalent to either unitary [28] or J -unitary matrix dilations [20], [21]. These
approaches are only a few ways to access the massive literature on dilation theory.
This report approaches dilation theory using the Cosine-Sine decomposition (CSD).
The focus is on matrix dilations so the algebraic patterns clearly stand out.

Let A be a given M ×M matrix. The dilation problem is to parameterize all
unitary dilations UA of matrix A: find all matrices B ∈ CM×N , C ∈ CN×M , and
D ∈ CN×N so that the dilation

UA =

[
A B
C D

]

is unitary:

UH
A UA =

[
IM 0
0 IN

]
.

Here IM denotes the M × M identity matrix and the superscript H denotes the
Hermitian or conjugate transpose. The CSD parameterizes all unitary dilations of A
and reveals how the dilation of smallest size is encoded in A.

A unitary dilation is not the only type of dilation that can be considered. A
significant generalization replaces the unitary equality

UH
A UA = IM+N

with the contractive inequality

UH
A UA ≤ IM+N .

In the latter case, UA is called a contractive dilation of A. The CSD parameterizes
all these contractive dilations. The simple patterns give a short proof of Parrot’s
Theorem, which has connections to H∞ theory and electrical engineering. It is in
electrical engineering that the CSD generalizes to its J -unitary version. In this setting,
the problem is to find all dilations of A that are J -unitary or hyperbolic:

UH
A JUA = J :=

[
IM 0
0 −IN

]
.
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Electrical engineers routinely use a natural mapping between unitary matrices and
hyperbolic matrices. Under this mapping, the CSD naturally turns into the Hyper-
bolic Cosh-Sinh decomposition (HCSD). From this HCSD, all J -unitary dilations are
obtained. Thus, the CSD admits a hyperbolic generalization with engineering appli-
cations. We conclude by pointing out that several other matrix decompositions also
generalize to hyperbolic versions with signal-processing applications.

2 Notation

The set of all complex-valued M ×N matrices is denoted by CM×N . If X ∈ CM×N ,
X is said to have size M ×N , which will be denoted X ∼M ×N . The Hermitian or
conjugate transpose of X is denoted by XH . The group of M ×M unitary matrices
is denoted by

U(M) := {U ∈ CM×M : UHU = IM}.
A diagonal matrix Θ is denoted by

Θ = diag(θ1, · · · , θM) =




θ1 0 . . . 0
0 θ2 . . . 0
...

...
. . .

...
0 0 . . . θM



.

With a slight abuse of notation, cos(Θ) denotes the diagonal matrix

cos(Θ) =




cos(θ1) 0 . . . 0
0 cos(θ2) . . . 0
...

...
. . .

...
0 0 . . . cos(θM)



.

Similarly, sin(Θ) denotes the diagonal matrix

sin(Θ) =




sin(θ1) 0 . . . 0
0 sin(θ2) . . . 0
...

...
. . .

...
0 0 . . . sin(θM)



.

3 Cosine-Sine Decomposition

If a matrix A is square (N = M), one unitary dilation of A is the Halmos dilation
[17, Chapter 23]:

UA =

[
A −(IM −AAH)1/2

(IM −AHA)1/2 AH

]
,
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where the positive semidefinite square root is selected. Halmos points out that this
dilation has a nice geometric interpretation. If A has a singular-value decomposition
A = U cos(Θ)V H, where U and V are unitary matrices, then UA generalizes the
classic rotation matrix as follows:

UA =

[
U 0
0 V

] [
cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

] [
V 0
0 U

]H
.

This is a special case of the CSD.

Theorem 1 (CSD) [34, page 37], [15, page 77] Let the unitary matrix W ∈ U(M +
N) be partitioned as

W =

[
W11 W12

W21 W22

]
CM

CN

CM CN

.

If N ≥ M , then there are unitary matrices U11, V11 ∈ U(M) and unitary matrices
U22, V22 ∈ U(N) such that

[
W11 W12

W21 W22

]
=

[
U11 0
0 U22

] 

C −S 0
S C 0
0 0 IN−M




[
V11 0
0 V22

]H
,

where C ≥ 0 and S ≥ 0 are diagonal matrices satisfying C2 + S2 = IM .

Thus, the CSD simultaneously produces the singular-value decompositions (SVDs)
for W11, W21, W12, and W22 from the sine and cosine matrices. The converse param-
eterizes the unitary dilations of A.

4 Parameterizing Unitary Dilations

Given the SVD of a matrix A, the CSD shows us how to get a unitary dilation of A.
The utility of the CSD is that all unitary dilations of A with N ≥M can be obtained
this way.

Corollary 1 [23, Problem 1.6.21] Let A ∈ CM×M be a contraction. Select any
singular-value decomposition

A = U11 cos(Θ)V H
11 ,
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where Θ = diag(θ1, · · · , θM) is sorted in ascending order: 0 ≤ θ1 ≤ · · · ≤ θM ≤ π/2.
If N ≥M , then all unitary dilations of A with D ∈ CN×N are parameterized as

[
A B
C D

]
=

[
U11 0
0 U22

] 


cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 IN−M




[
V11 0
0 V22

]H
,

where U22, V22 ∈ U(N).

Proof: If UA has the given CSD, then UA is a unitary dilation of A and demonstrates
that unitary dilations of A exist for N ≥ M . Conversely, if UA is a unitary dilation
of A with N ≥M , the CSD gives

UA =

[
X11 0
0 X22

] 


cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 IN−M




[
Y11 0
0 Y22

]H
,

where X11, Y11 ∈ U(M), X22, Y22 ∈ U(N), and A = X11 cos(Θ)Y H
11 . The unicity

of the SVD allows us to set X11 = U11 and Y11 = V11 and use only U22 and V22 to
parameterize the unitary dilations. To demonstrate this claim, observe that A has
the SVDs

A = U11 cos(Θ)V H
11 = X11 cos(Θ)Y H

11 .

So, how unique are U11 and V11 compared to X11 and Y11? Write

cos(Θ) =




c1Im1

c2Im2

. . .
cKImK

0



,

where c1 > c2 > · · · > cK > 0 are the distinct non-zero singular values of multiplicity
mk. By [23, Theorem 3.1.1′], there are unitary matrices W1, W2, . . . , WK, E1, and
E2 such that

F =




W1

W2

. . .
WK

E1




and G =




W1

W2

. . .
WK

E2




link the two SVDs of A as X11 = U11F and Y11 = V11G. By construction, both F
and G commute with cos(Θ) and sin(Θ), and satisfy

cos(Θ) = F cos(Θ)GH = GH cos(Θ)F.
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Substitution gives

UA =
[

U11F 0
0 X22

]


cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 IN−M




[
GHV H

11 0
0 Y H

22

]

=
[

U11 0
0 X22

] 


F cos(Θ)GH −F sin(Θ) 0
sin(Θ)GH cos(Θ) 0

0 0 IN−M




[
V H

11 0
0 Y H

22

]

=
[

U11 0
0 X22

] 


cos(Θ) − sin(Θ)F 0
GH sin(Θ) GH cos(Θ)F 0

0 0 IN−M




[
V H

11 0
0 Y H

22

]

=
[

U11 0
0 U22

] 


cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 IN−M




[
V H

11 0
0 V H

22

]
,

where

U22 = X22

[
GH 0
0 IN−M

]
, V22 = Y22

[
F H 0
0 IN−M

]
.

Because X22, Y22 ∈ U(N) are arbitrary, U22 and V22 are also arbitrary. Thus, we may
fix U11 and V11 to parameterize UA using only U22 and V22 ∈ U(N). ///

The proof shows how the non-uniqueness in the SVD of A (the matrices F and
G) can be peeled off and then cast into the arbitrary U22 and V22 matrices. Thus, U11

and V11 may be fixed so that the dilations are parameterized only by U22, V22 ∈ U(N).

For dilations with N ≤ M , consider the following numerical example. Partition
the random unitary matrix UA as follows:

UA =

[
A B
C D

]
=




−0.3944 −0.2202 0.1686 0.0281 −0.5633 0.4974 0.4495
−0.5276 −0.0880 −0.5915 0.1517 0.1399 0.3175 −0.4697

0.6000 −0.0909 −0.2244 0.6823 −0.2040 0.2708 −0.0318
−0.0484 0.1497 −0.3991 −0.0607 −0.7027 −0.5589 −0.0777

0.3307 −0.7570 −0.2090 −0.5057 −0.0567 0.0589 −0.1069
−0.2331 −0.4216 −0.2224 0.3707 0.3144 −0.4437 0.5342

0.2001 0.4028 −0.5647 −0.3375 0.1602 0.2563 0.5230


.

Corollary 1 would dilate A to a 10× 10 unitary matrix. However, A has the singular-
value matrix

[
I3 0
0 cos(Θ)

]
=




1.0000
1.0000

1.0000
0.8771

0.2452


.

The two smallest singular values clue us that the 5× 5 matrix A came from the 7× 7
unitary matrix UA. More generally, the number of singular values that are strictly
less than 1 actually encode the size of the smallest unitary dilation.

Corollary 2 [23, Problem 1.6.21] Let A ∈ CM×M be a contraction with SVD

A = U11

[
IL 0
0 cos(Θ)

]
V H

11 ,
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where Θ = diag(θ1, · · · , θK) and 0 < θ1 ≤ · · · θK ≤ π/2. If N ≤ M , then all unitary
dilations of A with D ∼ N ×N must have N ≥ K and take the form

[
A B
C D

]
=

[
U11 0
0 U22

] 

IM−N 0 0

0 cos(Ψ) − sin(Ψ)
0 sin(Ψ) cos(Ψ)




[
V11 0
0 V22

]H
,

where U22, V22 ∈ U(N) and Ψ =
[

0N−K 0
0 Θ

]
.

Proof: The CSD permits us to select the decomposition

[
D C
B A

]
=

[
X22 0
0 X11

] 


cos(Ψ) sin(Ψ) 0
− sin(Ψ) cos(Ψ) 0

0 0 IM−N




[
Y22 0
0 Y11

]H
,

where Ψ = diag(ψ1 . . . , ψN ); 0 ≤ ψ1 ≤ . . . ≤ ψN ≤ π/2; X22, Y22 ∈ U(N); X11,
Y11 ∈ U(M). By some non-trivial relabeling, we may write

[
A B
C D

]
=

[
X11 0
0 X22

] 


IM−N 0 0
0 cos(Ψ) − sin(Ψ)
0 sin(Ψ) cos(Ψ)




[
Y11 0
0 Y22

]H
. (1)

By assumption, A has K singular values strictly less than 1 and L singular values
exactly equal to 1. Then K +L = M and M −N ≤ L. Then all dilations must have
N ≥M − L = K. The unicity of the singular values [23, page 146] and the ordering
of the ψn’s permit us to write Ψ as stated. When N = K, it follows that Ψ = Θ
so that the smallest dilations exist. Equation 1 now permits the application of the
unicity arguments from Corollary 1. Thus, we may fix X11 and Y11 as the unitary
matrices U11 and V11 from the SVD of A and sweep out all dilations of A by sweeping
over X22, Y22 ∈ U(N). ///

The important special case of Corollary 2 is the parameterization of the unitary
dilations of smallest size:

[
A B
C D

]
=

[
U11 0
0 U22

] 

IL 0 0
0 cos(Θ) − sin(Θ)
0 sin(Θ) cos(Θ)




[
V11 0
0 V22

]H
,

where | cos(θm)| < 1. This case explains the preceding numerical example where
A ∼ 5 × 5 had IL ∼ 3 × 3 and Θ ∼ 2 × 2. Thus, A has unitary dilations of size 7 × 7
or larger.
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5 Parameterizing Contractive Dilations

Given a matrix A that is a contraction, the problem is to find all dilations

TA =

[
A B
C D

]

that are also contractions: THA TA ≤ IM+N . The CSD provides a straight-forward
parameterization of all the TA’s by compressing a unitary dilation.

Corollary 3 (Adapted from [7], [30], [27], [36], [14, Corollary 3.5]) Let A ∈ CM×M

be a contraction. Select any singular-value decomposition

A = U11 cos(Θ)V H
11 ,

where Θ = diag(θ1, · · · , θM) is sorted in ascending order: 0 ≤ θ1 ≤ · · · ≤ θM ≤ π/2.
Then all contractive dilations of A with D ∼ N ×N may be parameterized as

[
A B
C D

]
=

[
U11 0 0
0 U22 U23

] 


cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 I2N






V H

11 0
0 V H

22

0 V H
23


 ,

where [U22 U23], [V22 V23] ∈ PNU(M + 2N). Here, PN denotes the orthogonal
projection onto the first N components of CM+2N .

Proof: Let PM+N denote the orthogonal projection onto the first M+N components
of C2M+2N . By Corollary 1, A has unitary dilations of the form

UA =



U11 0 0
0 U22 U23

0 U32 U33







cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 I2N






V H

11 0
0 V H

22 V H
32

0 V H
23 V H

33


 .

Then TA = PM+NUA|CM+N is a contractive dilation of AwithD ∈ CN×N . Conversely,
let TA be a contractive dilation. By Corollary 1, the unitary Halmos dilation

UTA
=

[
TA −(IM+N − TAT

H
A )1/2

(IM+N − THA TA)1/2 THA

]

admits the factorization

UTA
=



U11 0 0
0 U22 U23

0 U32 U33







cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 I2N






V H

11 0
0 V H

22 V H
32

0 V H
23 V H

33


 .

Then TA = PM+NUA|CM+N . ///

This whole apparatus generalizes to operators on Hilbert spaces [14]. A good
representative of the CSD in action on a Hilbert space is Parrot’s Theorem.
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Theorem 2 (Parrot) [7], [30], [27], [4] Let H and K be Hilbert spaces with orthogo-
nal decompositions H = H1 ⊕H2 and K = K1⊕K2. Let A : H1 → K1, B : H2 → K1,
C : H1 → K2, be fixed operators. For D : H2 → K2, define TD : H → K as the
operator

TD =

[
A B
C D

]
K1

K2

H1 H2

.

Then

inf{‖TD‖} = max

{ ∥∥∥∥∥

[
A 0
C 0

]∥∥∥∥∥ ,

∥∥∥∥∥

[
A B
0 0

]∥∥∥∥∥

}
. (2)

The CSD provides a proof of Parrot’s Theorem for the matrix case. Without
loss of generality, scale the right side of Equation 2 to 1 so that ‖TD‖ ≥ 1 for any
operator D. Equality is demonstrated by finding a contractive TD. The scaling also
forces both matrices in the right side of Equation 2 to be contractions. By Corollary 3,
both matrices admit the representations:

[
A 0
C 0

]
=

[
U11 cos(Θ)V H

11 0
U22 sin(Θ)V H

11 0

]

and [
A B
0 0

]
=

[
U11 cos(Θ)V H

11 −U11 sin(Θ)V H
22

0 0

]
.

Combining both representations gives the contraction

[
A B
C D

]
=

[
U11 cos(Θ)V H

11 −U11 sin(Θ)V H
22

U22 sin(Θ)V H
11 U22 cos(Θ)V H

22

]

and proves Parrot’s Theorem.

Meinguet [27] offers a fine exposition of Parrot’s Theorem and its applications. A
key application is Nehari’s Theorem [36], [30] that is the foundation of H∞ engineering
[22]. A link with dilation theory can be traced as follows. By 1970, Nagy & Foiaş
[13] developed a dilation theory for analytic functions whose values are contractions
on a Hilbert space. In 1972, J. W. Helton [19] connected their dilation theory to
the main realizability theorem of electrical engineering. By 1982, Helton [21] and his
colleagues had made deep connections between operator theory, electrical engineering,
and control theory. These applications enriched the operator theory with significant
generalizations. In particular, the dilation theory admits a nice generalization to
dilating J -unitary or hyperbolic matrices. Electrical engineering problems provide an
exellent motivatation to consider the hyperbolic matrices and J -unitary dilations.
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6 Hyperbolic Matrices in Electrical Engineering

A basic object in electrical engineering is the N -port. The N -port is a “black box”
with N pairs of wires sticking out of it. The word “port” means that each pair of
wires obeys a conservation of current—the current flowing into one wire of the pair
equals the current flowing out of the other wire. Figure 1 shows a 2-port with voltage
sources driving each port. The N -port is the collection of voltage v and current i
vectors that can appear on its ports [20]. Thus, the N -port is really a subset N of a
larger voltage-current space, typically an L2 space.

Figure 1: 2-port voltages, currents, and scattering parameters.

Physical assumptions about the N -port translate into geometric statements about
N . For example, a linearN -port is equivalent to the subset N being a linear subspace.
Under more restrictive assumptions, the N -port can be the graph of a linear operator.
For example, if the N -port that relates voltage and current as v = Zi is characterized
by the impedance matrix Z:

N =

{[
Zi
i

]}
.

Likewise, if i = Y v, the N -port is characterized by its admittance matrix Y :

N =

{[
v
Y v

]}
.

Not all N -ports necessarily admit impedance or admittance matrices—classic exam-
ples are open circuits, short circuits, and transformers. However, if each port is
connected to a voltage source and series resistor rn, the claim is that any linear, time-
invariant, solvable N -port is characterized by its N ×N scattering matrix S [5], [6],
[20]. Specialized to the 2-port in Figure 1, the scattering matrix maps

b =

[
b1
b2

]
=

[
s11 s12

s21 s22

] [
a1

a2

]
= Sa,

9



where the incident signal
a = (R

−1/2
0 v +R

1/2
0 i)/2

and the reflected signal
b = (R

−1/2
0 v−R

1/2
0 i)/2

are computed from the voltage v and current i via the normalizing matrix

R0 =

[
r1 0
0 r2

]
.

No loss of generality is incurred by taking R0 as the identity matrix: R0 = I2.

The power P consumed by the 2-port is provided by Balabanian and Bickart [6,
pages 241–242]:

P = <[vHi] = ‖a‖2 − ‖b‖2 = aH(I2 − SHS)a. (3)

If the 2-port consumes no power (P = 0) for all its voltage and current pairs, the
2-port is lossless. By Equation 3, a 2-port is lossless if and only if its scattering
matrix S is unitary: SHS = I2. How do dilations fit into circuit theory? If Port 2
is terminated in resistor r2, then the reflectance s1 looking into Port 1 is s1 = s11.
The circuit synthesis problem is the converse: given the reflectance s1, find all lossless
2-ports

S =

[
s11 s12

s21 s22

]
with s1 = s11.

Thus, circuit synthesis is a problem in dilation theory [21], [20], [28].

Closely related to the scattering matrix is the chain scattering matrix Θ [18, page
148]: [

b1
a1

]
=

[
θ11 θ12

θ21 θ22

] [
a2

b2

]
= Θ

[
a2

b2

]
.

When multiple 2-ports are connected in a chain as in Figure 2, the chain scattering
matrix of the chain is product of the individual chain scattering matrices.

When S is unitary, then Θ is a J -unitary matrix [26], [25], [21]:

ΘHJΘ = J =

[
1 0
0 −1

]
.

Thus, the lossless 2-ports provide excellent examples of unitary and J -unitary ma-
trices. The mappings between the scattering matrices and the chain matrices are
provided by Hasler and Neirynck [18]:

S 7→ s−1
21

[
−det[S] s11

−s22 1

]
= Θ 7→ θ−1

22

[
θ12 det[Θ]
1 −θ21

]
= S. (4)

10



Figure 2: Chain of 2-ports has chain scattering matrix Θ = Θ1Θ2.

Although the 2-port has a scattering matrix, it admits a chain scattering matrix only
if s21 is invertible. These notions generalize to N -ports. A matrix Θ is J -unitary
when

ΘHJΘ = J :=

[
IM 0
0 −IN

]
.

The collection of all such J -unitary matrices is denoted as U(M,N). Equation 4
generalizes to the map S : U(M,N) → U(M + N) that takes a chain scattering
matrix to its corresponding scattering matrix [21], [8]:

S[Θ] =

[
Θ12Θ

−1
22 Θ11 − Θ12Θ

−1
22 Θ21

Θ−1
22 −Θ−1

22 Θ21

]
. (5)

The matrix map S is well-defined because

J =

[
IM 0
0 −IN

]
=

[
ΘH

11Θ11 − ΘH
21Θ21 ΘH

11Θ12 −ΘH
21Θ22

ΘH
12Θ11 − ΘH

22Θ21 ΘH
12Θ12 −ΘH

22Θ22

]
= ΘHJΘ

forces both Θ11 ≥ IM and Θ22 ≥ IN . The matrix map S turns the CSD and unitary
dilations into a hyperbolic CSD and J -unitary dilations.

7 Cosh-Sinh Decomposition

The canonical example of a hyperbolic matrix is given by Mendes and Ruas [26]:

H =

[
cosh(ψ) sinh(ψ)
sinh(ψ) cosh(ψ)

]
∈ U(1, 1).

This example is a special case of the HCSD.
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Corollary 4 (HCSD) Let H ∈ U(M,N) with M ≤ N . Then there are unitary
matrices U11, V11 ∈ U(M) and U22, V22 ∈ U(N) such that

H =

[
U11 0
0 U22

] 


cosh(Ψ) sinh(Ψ) 0
sinh(Ψ) cosh(Ψ) 0

0 0 IN−M




[
V11 0
0 V22

]H
,

where Ψ = diag(ψ1, · · · , ψM) for ψm ≥ 0.

Proof: If H is J -unitary, Equation 5 makes

W = S[H] =

[
H12H

−1
22 H11 −H12H

−1
22 H21

H−1
22 −H−1

22 H21

]

unitary. To preserve the block structure, apply the CSD as follows:

[
W12 W11

W22 W21

]
=

[
U11 0
0 U22

] 


cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 IN−M




[
V11 0
0 V22

]H
,

where Θ = diag(θ1, · · · , θM) for 0 ≤ θm < π/2. Substitution back into H gives

H =

[
U11 0
0 −V22

] 


cos(Θ)−1 tan(Θ) 0
tan(Θ) cos(Θ)−1 0

0 0 IN−M




[
V11 0
0 −U22

]H
.

Relabeling produces the hyperbolic CS decomposition. ///

Just as the CSD parameterizes the unitary dilations, the HCSD parameterizes the
hyperbolic dilations.

8 Parameterizing Hyperbolic Dilations

A hyperbolic dilation can be defined in several ways. One approach starts with matrix
A ∈ CM×M such that AHA ≥ IM . The problem is to find matrices B, C, and D such
that

HA =

[
A B
C D

]

is J -unitary. If N ≥M and A has the SVD

A = U11 cosh(Ψ)V H
11 ,
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then the HCSD and Corollary 1 arguments give that all hyperbolic dilations of A
with D ∼ N ×N have the form

[
A B
C D

]
=

[
U11 0
0 U22

] 


cosh(Ψ) sinh(Ψ) 0
sinh(Ψ) cosh(Ψ) 0

0 0 IN−M




[
V11 0
0 V22

]H
,

where U22, V22 ∈ U(N).

If A has the SVD

A = U11

[
IL 0
0 cosh(Ψ)

]
V H

11 ,

with 0 < ψ1 ≤ · · · ≤ ψK, then Corollary 2 arguments ensure that the smallest
hyperbolic dilations of A have the form

[
A B
C D

]
=

[
U11 0
0 U22

] 

IL 0 0
0 cosh(Ψ) sinh(Ψ)
0 sinh(Ψ) cosh(Ψ)




[
V11 0
0 V22

]H
,

where U22, V22 ∈ U(K).

These hyperbolic dilations are obtained by mapping the hyperbolic matrix back to
a unitary matrix, dilating, and mapping back to a hyperbolic dilation. Moreover, just
as the CSD generalizes to the hyperbolic CSD, other decompositions of linear algebra
admit hyperbolic counterparts. Array processing problems led to a hyperbolic SVD
[29], a hyperbolic URV decomposition [35], and a hyperbolic approach to Kalman
filtering [16]. The general principle is that the dilations and decompositions obtained
for one class of matrices can map into another class of matrices.

Implementing these decompositions in VLSI has been a research topic at the
Institute for Network Theory and Circuit Design, Technical University, Munchen,
Germany [11]. Diepold and Pauli [9] started with the Schur Decomposition of in-
definite matrices. They realized this decomposition was part of the more general
problem of embedding a passive matrix in a lossless matrix [10]. They subsequently
found a group-theoretic approach that organizes this embedding problem in a signal-
processing context that admits hardware solutions [12].

9 Antenna-Matching Applications

Figure 3 shows a 180◦ hybrid chained to a double ferrite antenna and loaded with a
lossless 2-port. The hybrid and the antenna are 4-ports. The lossless 2-port is the
designable part of this system. The ports are connected by lines that represent the
two wires that attach to the two terminals that constitute a port.

13



Figure 3: Hybrid-Antenna chain loaded with lossless 2-port (solid).

When the lossless 2-port terminates the antenna, the resulting hybrid-antenna
4-port is converted to a 2-port with scattering matrix

ST =

[
s11 s12

s21 s22

]
.

The design goal is find a lossless 2-port that forces s11 and s12 to be small. The pa-
rameterizations of the lossless 2-port provide performance bounds. For this particular
antenna under consideration, these performance bounds show that this 2-port loading
cannot simultaneously force s11 and s12 to be small. Rather than waste time trying
to load this antenna, the engineer should look for other antennas that are amenable
to 2-port loading.

The hybrid has ideal scattering matrix [31, Equation 7.101]:

SH,0 = − j√
2




0 1 1 0
1 0 0 −1
1 0 0 1
0 −1 1 0


 .

However, SH,0 implies that the ports are indexed as shown in the right side of Figure 4.
To chain the hybrid to the antenna, the ports are numbered using the hybrid on the
left side of Figure 4.

The renumbered hybrid has scattering matrix [24, Equation 1]:

SH = − j√
2




0 0 1 1
0 0 −1 1
1 −1 0 0
1 1 0 0


 .

This scattering matrix SH has chain matrix:

ΘH = − j√
2




1 1 0 0
−1 1 0 0

0 0 −1 −1
0 0 1 −1


 .
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Figure 4: Hybrid port numbering.

For reference, the mapping between the scattering matrix S and its chain scattering
matrix Θ is provided by Kimura [25, Equations 4.11, 4.12]:

S =

[
Θ12Θ

−1
22 Θ11 −Θ12Θ

−1
22 Θ21

Θ−1
22 −Θ22−1Θ21

]

and [25, Equation 4.5]:

Θ =

[
S12 − S11S

−1
21 S22 S11S

−1
21

−S−1
21 S22 S−1

21

]
.

Figure 5 plots the scattering matrix SA of the Double Ferrite Antenna. Each
element of the antenna’s scattering matrix

SA =




sA,11 sA,21 sA,31 sA,41

sA,12 sA,22 sA,32 sA,42

sA,13 sA,23 sA,33 sA,43

sA,14 sA,24 sA,34 sA,44




is a complex-valued function of frequency sA,mn(j2πf) for 2 < f < 10 MHz in the
complex unit disk.

Although the scattering matrix SA is a 4 × 4 matrix, SA is both symmetric,

SA = STA,

and centro-symmetric (symmetric across the cross-diagonal),

SA = RSTAR; R =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 .

In addition, SA is constant along the diagonal and the cross-diagonal. Consequently,
SA can have no more than four independent functions.
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Figure 5: Scattering matrix of Double Ferrite Antenna.

If ΘA denotes the chain scattering matrix of the antenna, the hybrid-antenna
chain has scattering matrix computed from the product of the chain matrices:

S ⇐⇒ ΘHΘA.

Figure 6 plots the 16 complex-valued functions. The hybrid is destroying some of the
antenna’s symmetry.

Partition the scattering matrix of the 4-port into 2 × 2 blocks:

S =

[
S11 S12

S21 S22

]
.

Let the 4-port be terminated in the lossless 2-port with 2 × 2 scattering matrix SL.
The resulting 2-port ST is obtained by looking into Ports 1 and 2 of the Hybrid while
Ports 3 and 4 of the antenna are terminated in the lossless 2-port SL:

ST = S11 + S12SL(I − S22SL)
−1S21 =

[
s11 s12

s21 s22

]
.
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Figure 6: Scattering matrix of Hybrid-Antenna chain.

Observe that S is really a function of the lossless load and frequency:

S(SL; jω)

[
s11(SL; j2πf) s12(SL; j2πf)
s21(SL; j2πf) s22(SL; j2πf)

]
.

The design goal is to simultaneously minimize s11 and s21. One multi-objective func-
tion is the worst performance at any frequency:

γ(SL) =

[
‖s11(SL)‖∞
‖s21(SL)‖∞

]
=

[
max{|s11(SL; j2πf)| : 2 < f < 10}
max{|s21(SL; j2πf)| : 2 < f < 10}

]
.

If U denotes a class of lossless available to the designer, the multiobjective optimiza-
tion problem is

min{γ(SL) : SL ∈ U}.

A lower bound on this performance can be obtained by fixing a frequency:

γ(SL; f0) =

[
|s11(SL; j2πf0)|
|s21(SL; j2πf0)|

]
≤ γ(SL).
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Although SL(j2πf0) is a unitary matrix, not all unitary matrices may be parameter-
ized by this SL. That is,

{SL(j2πf0) : SL ∈ U} ⊆ U(2).

This set inclusion forces the inequality:

min{γ(S, f0) : S ∈ U(2)} ≤ γ(SL; f0) ≤ γ(SL).

Consequently, a lower bound on the matching performance may be obtained by fixing
the frequency and sweeping over the 2 × 2 unitary matrices of U(2). These unitary
matrices can be parameterized by Corollary 1—any S ∈ U(2) has the representation

S =

[
ejφ11 0
0 ejφ22

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
ejψ11 0
0 ejψ22

]
.

Figure 7 plots γ(S, f0) over a dense sampling of S ∈ U(2). The plot shows that it is
impossible to make s11 and s21 simultaneously small with lossless loading at single fre-
quency. The performance can only be worse over the frequency band. Consequently,
Figure 7 tells the antenna engineer not to waste time with any lossless loading design
for this antenna. Rather, the antenna must be redesigned for better performance.

Figure 7: Lower performance bound of lossless loading.
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